748 research outputs found

    Crystallization and preliminary X-ray studies of mouse tumor necrosis factor

    Full text link

    The white spot syndrome virus DNA genome sequence

    Get PDF
    AbstractWhite spot syndrome virus (WSSV) is at present a major scourge to worldwide shrimp cultivation. We have determined the entire sequence of the double-stranded, circular DNA genome of WSSV, which contains 292,967 nucleotides encompassing 184 major open reading frames (ORFs). Only 6% of the WSSV ORFs have putative homologues in databases, mainly representing genes encoding enzymes for nucleotide metabolism, DNA replication, and protein modification. The remaining ORFs are mostly unassigned, except for five, which encode structural virion proteins. Unique features of WSSV are the presence of a very long ORF of 18,234 nucleotides, with unknown function, a collagen-like ORF, and nine regions, dispersed along the genome, each containing a variable number of 250-bp tandem repeats. The collective information on WSSV and the phylogenetic analysis on the viral DNA polymerase suggest that WSSV differs profoundly from all presently known viruses and that it is a representative of a new virus family

    Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status

    Get PDF
    Background: GSL1 and GSL2, Gibberellin Stimulated-Like proteins (also known as Snakin-1 and Snakin-2), are cysteine-rich peptides from potato (Solanum tuberosum L.) with antimicrobial properties. Similar peptides in other species have been implicated in diverse biological processes and are hypothesised to play a role in several aspects of plant development, plant responses to biotic or abiotic stress through their participation in hormone crosstalk, and redox homeostasis. To help resolve the biological roles of GSL1 and GSL2 peptides we have undertaken an in depth analysis of the structure and expression of these genes in potato. Results: We have characterised the full length genes for both GSL1 (chromosome 4) and GSL2 (chromosome 1) from diploid and tetraploid potato using the reference genome sequence of potato, coupled with further next generation sequencing of four highly heterozygous tetraploid cultivars. The frequency of SNPs in GSL1 and GSL2 were very low with only one SNP every 67 and 53 nucleotides in exon regions of GSL1 and GSL2, respectively. Analysis of comprehensive RNA-seq data substantiated the role of specific promoter motifs in transcriptional control of gene expression. Expression analysis based on the frequency of next generation sequence reads established that GSL2 was expressed at a higher level than GSL1 in 30 out of 32 tissue and treatment libraries. Furthermore, both the GSL1 and GSL2 genes exhibited constitutive expression that was not up regulated in response to biotic or abiotic stresses, hormone treatments or wounding. Potato transformation with antisense knock-down expression cassettes failed to recover viable plants. Conclusions: The potato GSL1 and GSL2 genes are very highly conserved suggesting they contribute to an important biological function. The known antimicrobial activity of the GSL proteins, coupled with the FPKM analysis from RNA-seq data, implies that both genes contribute to the constitutive defence barriers in potatoes. The lethality of antisense knock-down expression of GSL1 and GSL2, coupled with the rare incidence of SNPs in these genes, suggests an essential role for this gene family. These features are consistent with the GSL protein family playing a role in several aspects of plant development in addition to plant defence against biotic stresses. © 2014 Meiyalaghan et al.; licensee BioMed Central Ltd
    corecore